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ions are parameters that establish the almost fully 
ionic character of these compounds. The crystalline- 
field effect causes a contraction of the anions and a 
slight expansion of the cation. In the absence of recent 
and precise experimental data on structure factors, 
the values reported in this study may be used as a 
reference. They will be refined in the future by the 
exploration of the importance of polarization func- 
tions on the S 2- ion in order to improve the agreement 
factor for Li2S and to calculate its deformation accu- 
rately by the rigorous calculation of scattering factors 
by Fourier transform of the electron density on a 'per 
energy band occupied' basis and by taking thermal 
agitation into account. 

The authors wish to express their gratitude to 
Professor C. Pisani for his helpful suggestions. The 
calculations were carried out on the IBM-3090/600- 
VF ofthe Centre National Universitaire Sud de Calcul 
(CNUSC),  which is gratefully acknowledged. 
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Abstract 

A phase-refinement procedure based on iterative 
skeletonization of electron density maps is presented. 
As with traditional solvent-flattening methods, 
refinement alternates between real-space and 
reciprocal-space representations of the scattering 
density. A pseudoatom list derived from the modified 
skeleton of an initial electron density map provides 
calculated structure-factor amplitudes and phases. 
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Recombination with the observed Fob~ values yields 
a new map that can serve as the starting point for 
another round of skeletonization. Tests using partial 
structures to provide starting crystallographic phases 
have shown this refinement procedure to have a sig- 
nificantly larger radius of convergence than solvent 
flattening. 

Introduction 

The procedure to find a solution to the crystallo- 
graphic phase problem is generally the rate-limiting 
step in macromolecular structure determination by 
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X-ray diffraction (Blundell & Johnson, 1976). All 
crystallographic protein structures have relied upon 
a limited number of experimental or computational 
methods to obtain phase estimates before building a 
complete atomic model. These techniques, including 
isomorphous replacement, anomalous scattering and 
molecular replacement, often yield poor initial esti- 
mates of the phases, resulting in electron density maps 
that are difficult to interpret. The development of 
techniques capable of improving phases in the 
absence of a complete atomic model should dramati- 
cally increase the rate of structure determination by 
X-ray crystallography and minimize problems such 
as incorrect chain tracing that have plagued several 
recent structures (Branden & Jones, 1990). 

The method of density modification (also known 
as solvent flattening) has been used in a number of 
cases to maximize the information available from a 
single derivative or from anomalous-scattering data 
(see, for example, Chen et al. 1991; Tulinsky, Park 
& Skrzypczak-Jankun, 1988; Messerschmidt et al. 
1989). Density modification is an iterative proce- 
dure consisting of two distinct steps (Wang, 1985). 
Initially, an electron density map (calculated using 
the current phase estimates) is filtered such that the 
density of all regions lying outside a molecular 
boundary is set to some mean value and often a 
positivity constraint is also applied within the 
molecular boundary. Subsequent transformation of 
the filtere~l map yields a new set of crystallographic 
phases that can be recombined with the initial phases 
to produce an ' improved'  electron density map for 
the next cycle of refinement. While often successful, 
density modification has a limited radius of conver- 
gence, especially when the solvent content of a crystal 
is low. In addition, since the procedure always con- 
verges to some solution, it is sometimes impossible 
to tell whether or not solvent flattening has improved 
the phases. 

We have sought to develop new methods for phase 
refinement that can tolerate significantly larger errors 
in the starting phases. Our strategy has been to use 
the same cycle of real-space-reciprocal-space 
refinement, but to apply considerably stronger con- 
straints on the real-space representation of the scatter- 
ing. Our refinement applies these constraints by first 
skeletonizing the electron density map and then forc- 
ing this skeleton to adopt 'protein-like' characteris- 
tics. To evaluate our method, we have developed a 
number of test cases in which the starting phase 
information comes from partial atomic models. In 
the examples we have considered, our refinement 
procedure is able to converge to the correct phase 
solution, allowing the complete model to be built into 
the electron density map. In the same tests, solvent 
flattening produces a marginal improvement in the 
phases but leaves significant biases and errors in the 
final density map. 

Refinement method 

Fig. 1 outlines the key steps to our iterative phase- 
refinement protocol, P R I S M  (phase refinement by 
iterative skeleton modification). The procedure uses 
a set of experimental structure factors (Fobs) and 
corresponding initial phase estimates (a0) to start the 
refinement. In the test cases we have considered, the 
ao values are calculated from a partial model. In 
principle, more conventional sources such as SIR, 
MIR, anomalous scattering or molecular replace~nent 
using a more complete model could provide the start- 
ing phases. From Fobs and ao, one can calculate a 
starting electron density map corresponding to the 
asymmetric unit in the unit cell. Each cycle of 
refinement uses an electron density map as input and 
ends with the synthesis of another map based upon 
(hopefully) improved phases. By repeating several 
cycles of refinement, the phases gradually converge 
to final predicted values. The steps in each cycle of 
refinement are described below. 

Step 1. An asymmetric unit of the electron density 
map (calculated on an - 1 / ~  rectangular grid) is 
skeletonized using the M K S K E L  program, part of 
the G R I N C H  package (Williams, 1982; adapted for 
VMS by M. Carson, University of Alabama, USA). 
This program outputs a listing of nodes, correspond- 
ing to all local maxima along the x, y or z axes in 
the electron density map, and a listing of the connec- 
tions between nodes. The nodes represent pseudo- 
atoms in the structure, with the node connections 
defining the bonds between them. 

Step 2. The C O N N E C T  program (available upon 
request from CW) automatically modifies the skeleton 
output by M K S K E L  such that the scattering density 
resembles a single chain rather than a group of discon- 
nected atoms or groups of atoms. In contrast to the 
B O N E S  program of Alwyn Jones, University of 
Uppsala, Sweden, no user intervention is required to 
define the backbone, thus allowing the skeleton to be 
used in a completely automated fashion. C O N N E C T  
initially identifies connected graphs of nodes and 
immediately deletes the smallest graphs (those with 
fewer than three nodes) from the model. Nodes with 
only a single bond to all other nodes (termed end- 
points) are then identified and used to generate con- 
nections between the remaining isolated graphs. 

~ Calculate electron 
density 

i 

Calculate Fc, ac I Skeletonize 
I recombine with Fo I (GRINCH) 

Modify skeleton 
(CONNECT) 

Fig. 1. Overview of the PRISM phase-refinement scheme. Details 
for each step are described in the text. 
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The connections formed between graphs are 
defined by a path of grid points in the electron density 
map. To force connections between graphs, endpoints 
are allowed to diffuse on the lattice of grid points in 
the unit cell subject to the cost function 

C(i, k)=-Y,  d~' + w,p(k), 
J 

where C(i, k) is evaluated for the ith endpoint at the 
kth grid point in the density map; dq is the minimum 
distance between the ith and j th endpoints (taking 
adjacent symmetry mates into account); wi is an 
adjustable weighting parameter; and p(k) is the elec- 
tron density of the kth grid point. The summation 
over j  endpoints includes all those that do not belong 
to the same graph as the ith endpoint. By minimizing 
the cost function, endpoints are forced to form con- 
nections (decreasing do) while remaining in regions 
of high electron density [keeping -p(k)  small]. 

Minimization is done in a limited number of cycles 
with each endpoint moving a maximum of one grid 
point per cycle (thereby limiting the length of the 
connections that can be generated). For each end- 
point in a given cycle, the cost function at all adjacent 
grid points is evaluated and the endpoint is moved 
to the neighboring position with the lowest cost. w~ 
is initially set such that the starting gradient is as 
close to zero as possible, thus balancing the density 
and the distance terms. If the current position has 
the lowest cost, wi is dropped, removing the bias 
toward maintaining good electron density and favor- 
ing connection formation. If a pair of endpoints 
diffuse such that they lie on adjacent grid points, the 
two isolated graphs are grouped into a single larger 
graph and the pair of endpoints are removed from 
the minimization. Small graphs that remain uncon- 
nected to others after the maximum number of cycles 
of endpoint diffusion (those with fewer than six 
nodes) are deleted from the skeleton. The grid points 
defining the connections between graphs are added 
to the skeleton, which is then output as a list of atoms. 

Step 3. The pseudoatom list output by CONNECT 
is used to calculate structure factors (Fc) and phases 
(a~) for the next cycle (with the assumption of a 
carbon scattering curve for the pseudoatoms). The Fc 
are scaled to the observed structure factors (using 
zonal scaling). 

Step 4. A new electron density map is calculated 
using the updated phases, al values and modi- 
fied Fourier coefficients, Fw = 2wFo - F~ (w = Sim's 
weight; Sim, 1960). Maps calculated using the Fw 
coefficients are ideal for this procedure since they 
include the true scattering vector at full scale while 
minimizing the systematic noise directed along at 
(see Appendix). Alternative arguments for using these 
coefficients have been provided, and appropriate cor- 
rection factors to account for experimental errors 
have been derived by Read (1986). 

The ability of the refinement scheme to converge 
to the correct electron density map was estimated by 
several criteria. Because the refinement is done using 
calculated 'observed' data, the phase errors can be 
calculated exactly using the known structure. To esti- 
mate the accuracy of the phases, we have calculated 
the weighted phase error, 

a~=y~  Fob, ~ob,- ac / ~ Fobs, 

where the summation is done over all reflections. The 
crystallographic R factor between the scaled calcu- 
lated F valses and the experimental F values, 

R = Y. IFob,- Fcl/Y~ Fob,, 

provides a measure of the convergence and can also 
provide a crude measure of the error in the electron 
density map in cases in which the observed phases 
are not known. 

Control experiments 

The refinement procedure is based on the assumption 
that an electron density map can be accurately rep- 
resented by the nodes in a skeleton. To confirm this 
assumption, the following test was performed. An 
electron density map ( - 1 / ~  grid spacing) was 
calculated for the first fifty residues of myoglobin 
using coordinates obtained from the Protein Data 
Bank entry 1MBD (Phillips, 1978). The space group 
and unit cell of apolipoprotein-E, another all-helical 
protein, was used for this and all other calculations 
(P212121, a=41.26,  b=54.51, c=87.09/~,  a = f l =  
7 = 90°; see Wilson, Wardell, Weisgraber, Mahley & 
Agard, 1991). The electron density map for the 
myoglobin fragment was subsequently skeletonized 
using the MKSKEL program (Williams, 1982). The 
nodes in the skeleton were treated as pseudoatoms 
and used to obtain new structure factors and phases. 
Fig. 2 shows the zonal R factor between the correct 
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Fig. 2. Accuracy of the skeletonization procedure. Structure factors 
calculated from the atomic model for the first 50 residues of 
myoglobin were used to calculate a series of electron density 
maps with decreasing resolution. The maps were subsequently 
skeletonized using the GRINCH MKSKEL program. The 
unfiltered output (a list of local maxima in the density map) was 
used to calculate new structure factors (each local maximum 
was assumed to represent a dummy C atom). The zonal R factor 
is shown as a function of zonal resolution for each of the maps. 
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F values (obtained from the Fourier transform of the 
true electron density map) and those calculated from 
the corresponding skeleton. The errors in the skeleton 
model are a strong function of the resolution of the 
initial map used to generate the skeleton. If the start- 
ing map is calculated directly from the atomic co- 
ordinates (i.e. with infinite resolution), the zonal R 
factor remains below 25% for all data in the range 
10-3 ~ ,  but rises sharply at hi~her resolutions. A 
similar result is found using a 3 A resolution starting 
map. If lower-resolution starting maps are used to 
calculate the skeleton, the zonal R factor remains at 
about 25% for data below the resolution of the map 
but rises to that expected for a random structure at 
higher resolutions (Fig. 2). If the correct map is used 
as the input to the P R I S M  procedure and refined for 
several cycles, the overall R factor (10-3.0/~ data) 
rises to 30% while the phase error rises to 27 ° , provid- 
ing a best-case estimate for the final expected ampli- 
tude and phase errors. 

Refinement tests with defined partial models 

The P R I S M  method was initially tested using the 
50-residue myoglobin fragment described above as a 
model unknown structure. Several structures were 
constructed to test different possible biases in the 
starting models. The first model contained only C,~ 
atoms for all 50 residues of the myoglobin fragment. 
While this model has a small fraction of the total 
scattering density (50 atoms of the 417 making up 
the full structure), the electron density is well dis- 
tributed and there are no regions that are systemati- 
cally under-represented. A second model included all 
backbone and C~ atoms for the first 25 residues of 
the myoglobin fragment. While this half-backbone 
test case includes a higher fraction of the scattering 
density (122 atoms), the distribution is highly asym- 
metric with the entire C-terminal half missing from 
the initial map. To test the effect of measurement 
errors and coordinate errors on refinement, both the 
observed structure factors (i.e. those calculated for 
the full 50-residue model) and the starting myoglobin 
model coordinates were perturbed by the addition of 
a Gaussian distribution of random shifts. 

The first test of the refinement procedure used the 
C~-atom-only model of the myoglobin fragment as a 
starting partial model. An initial map calculated at 
3/~ resolution using the observed structure factors 
and C,~-based phases is shown in Fig. 3(a). This map 
was skeletonized using the M K S K E L  program (Wil- 
liams, 1982; Fig. 3b), the resulting skeleton was then 
modified by the C O N N E C T  program and a new map 
was calculated with the modified skeleton providing 
new phases and modified structure factors (Fig. 3c). 
This procedure was iterated ten times to produce the 
final refined map shown in Fig. 3(d). Fig. 4 shows the 
change in overall R factor and phase error during 

refinement. Whereas the initial phase error for the C~ 
model is 58 °, refinement lowers this to 33.5 °. Direct 
comparison of the true electron density map with the 
final map indicates that refinement restores the major- 
ity of the missing side-chain density (allowing the 
side chains to be easily modeled), as well as removing 
the extraneous density lying outside the protein 
region. The R factor and phase error in the final cycle 
closely approaches that obtained when refining from 
the true electron density map. Whereas the direction- 

~ " m  ~ .  , ~  . . . .  , 

o 

(a) (b) 

• 

(c) (d) 
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50 

ca- 40 

30 

Fig. 3. Steps in the refinement of a C,~-atom-only starting model. 
(a) Starting electron density map calculated using phases derived 
from the C,,-atom model. (b) Skeleton produced from the map 
in (a) using the G R I N C H  M K S K E L  program. (c) Skeleton 
following modification by the C O N N E C T  program. Electron 
density is calculated using phases derived from the modified 
skeleton. (d) Electron density calculated after ten cycles of 
P R I S M  refinement. 
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Fig. 4. Results for Ca-atom-only starting model. Overall R factor 
and phase error calculated as a function of refinement cycle, 
using the Ca-atom model to start refinement of the myoglobin 
fragment. Phase error is shown for both the P R I S M  refinement 
(open squares) and solvent-flattening refinement (filled circles). 
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ality of the starting model is ambiguous, density from 
the peptide carbonyl O atoms becomes readily 
apparent in the refined map, permitting the full atom 
backbone to be modeled. 

To allow a direct comparison between P R I S M  
refinement and conventional density modification, we 
have used the Wang (1985) solvent-flattening pro- 
grams with the backbone-atom model providing a 
starting-phase probability distribution for each reflec- 
tion. Ten cycles of iterative map filtering and phase 
recombination were carried out (recalculating the 
molecular boundary every cycle). A range of solvent 
fraction parameters were tested and optimal results 
were obtained with the input value for the solvent 
content set to 85%. The final recombined phases 
calculated by solvent flattening have an average phase 
error of 49.0 ° (Fig. 4), only marginally better than the 
starting-phase distribution (phase er ror= 58.0°). The 
results are marginally worse if the phases calculated 
in each cycle are used without being recombined with 
the partial starting-model phases (final phase error = 
54.5 °) or if 2wFo - Fc weights are used to produce the 
recombined map in each cycle (final phase e r ror=  
52.3°). In this test case, at least, P R I S M  refinement 
seems considerably more effective than the method 
of solvent flattening. 

The ability of the P R I S M  method to improve the 
phase estimates may in some way depend upon the 
high helical content of the myoglobin structure used 
for the test models. To demonstrate its more general 
utility, P R I S M  refinement was carried out with the 
first 50 residues of the protein alpha-lytic protease 
(Protein Data Bank entry 2ALP) as the test structure. 
In contrast to the largely helical myoglobin fragment, 
the alpha-lytic protease test model contains mostly 
extended fl strands. A partial starting model was 
generated from the Ca coordinates for the 50 residues 
and refinement was carried out as described above 
for the myoglobin fragment. After fifteen cycles of 
refinement the phase error had dropped significantly, 
from 51.9 to 31.8 °. This result suggests that successful 
use of P R I S M  refinement is not limited to highly 
ordered helical structures. 

A more pertinent test of the refinement procedure 
was constructed using a model containing only back- 
bone atoms for the first 25 residues of the 50-residue 
myoglobin fragment. Because this model lacks the 
majority of the side-chain atoms and the entire C- 
terminal half of the molecule, it more accurately 
simulates a potential starting map that one might 
obtain from molecular replacement with a fragment- 
search model. Fig. 5 shows the starting and final maps 
for this test case. Similar improvements in the overall 
R factor and the phase error are seen-with this half- 
backbone model (Fig. 6) as with the C : o n l y  model. 
The improvement is especially dramatic in the C- 
terminal region (Figs. 5c, d), with the disordered, 
unconnected density becoming continuous and easily 

interpretable in the final map. The final phase error 
in this test (27.2 ° ) is essentially identical to that 
obtained after several cycles of refinement with the 
complete model as a starting structure (26.9°). In 
contrast, the solution obtained following extensive 
solvent flattening had an average phase error of 52.6 ° 
(Fig. 6). Traditional density modification thus only 
slightly improves the phases relative to their initial 
estimates (phase error = 56.6 °) and yields a final map 
that is significantly noisier than the P R I S M - r e f i n e d  
map, especially in the C-terminal region. 

(a) (b) 

©. 

(c) (d) 

Fig. 5. Starting and final maps using a half-backbone-atom starting 
model. (a) Starting electron density map calculated using phases 
derived from the half-backbone-atom model. (b) Final electron 
density map after ten cycles of P R I S M  refinement. (c), (d) 
C-terminal region of the electron density (c) before and (d) 
after P R I S M  refinement. 
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Fig. 6. Results for half-backbone-atom starting model. Overall R 
factor and phase error as a function of refinement cycle, using 
the half-backbone-atom model to refine the myoglobin fragment. 
Phase error is shown for both the P R I S M  refinement (open 
squares) and the solvent-flattening refinement (filled circles). 
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Understanding the requirement for phase convergence 

Several additional tests were performed to simulate 
potential problems that might be encountered in a 
true structure determination. To approximate data- 
collection errors, the 'observed'  structure factors were 
altered by the addition of a Gaussian distribution of 
random shifts such that the R factor between the true 
data and the modified data was ---7%. This level of 
noise, significantly more than one might expect with 
typical diffraction data, appeared to have only minor 
effects on the refinement procedure (slowing it 
slightly) when using the half-backbone starting model 
(Table 1). Similar effects were observed when using 
a half-backbone starting model that had been per- 
turbed by the application of 0.5 ,~ random shifts to 
the atomic coordinates (Table 1). While systematic 
errors are likely to cause artifacts in the maps, the 
refinement procedure does not appear to require data 
free of random errors or a perfectly accurate partial 
starting model. 

To understand which aspects of the procedure are 
required for the phases to converge to the true values, 
we repeated the half-backbone test several times alter- 
ing steps in the refinement protocol. If conventional 
21Fol-lFcl Fourier coefficients are used in place of 
the optimally weighted coefficients (2wlFo I -IFcl), the 
phases improve only marginally after several cycles 
(Table 1). Modification of the skeleton also appears 
to play a key role; if the skeleton is not pruned or if 
connections in the density are not generated, the 
phases improve somewhat but the drop in the phase 
error is not as significant (Fig. 7). The resolution of 
the starting electron density map is important for 
proper refinement; a map with less than 3.5 ,~ reso- 
lution does not converge whereas one calculated 
at higher than 3.5,~ resolution converges easily 
(Table 1). 
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Fig. 7. Effects o f  skeleton modif ica t ion  on refinement.  The half- 
b a c k b o n e - a t o m  model  was used to start  ref inement  of  the 
myog lob in  f ragment .  In addi t ion  to the s tandard  pro tocol  (open  
squares) ,  the ref inement  was also carr ied out  in tests in which 
connec t ions  be tween  isolated subgraphs  were not  genera ted  
(open  circles) or  small  g raphs  were not p runed  out  o f  the skele ton 
(filled circles). 

Table 1. Requirements for phase refinement 
The h a l f - b a c k b o n e - a t o m  test (using b a c k b o n e  and  C B a toms  for  
residues l to 25 to model  the first 50 residues o f  myog lob in )  was 
carr ied out  using the s tandard  ref inement  scheme descr ibed  in the 
test. In addi t ion ,  the ref inement  was repea ted  several  t imes with 
slight changes  in the ref inement  pro tocol  as descr ibed above.  

Start ing Start ing Final Final 
R fac tor  phase  R fac tor  phase  

Test  condi t ions  (%) error  (o) (%) error  (o) 

Standard refinement 50.5 60.1 30.5 27.2 
Using 2Fo - F¢ 

recombination 50.5 60.1 37.0 42.4 
Not pruning small groups 

of atoms 50.5 60.1 33.9 36.3 
Not generating connections 

between groups 50.5 60.1 34.5 40.4 
Addition of 7% noise 

to the data 52.4* 60.1 34.3* 33.1 
0.5 A random shifts of 

starting-model atoms 56.35 61.9 33.2 33.4 
Low-resolution (4 A) 

starting map 50.5t 61.6t 39.7 53.4 

* R factor calculated with Fo being error-added data, not error-free data. 
1- Starting parameters calculated after the first cycle of skeletonization. 

Discussion 

This work describes the development of an automated 
phase-refinement procedure to be used with phases 
provided by a partial model of the scattering density. 
As with standard density-modification (solvent-flat- 
tening) techniques, our method alternates between 
real-space and reciprocal-space representations of the 
scattering density. Whereas solvent flattening uses the 
real-space constraint that all density lie within a 
molecular boundary,  our constraint is significantly 
more restrictive. By skeletonizing the map and using 
the nodes in the skeleton as dummy atoms, we 
immediately enforce positivity and atomicity on the 
electron density. The scattering density in a protein 
crystal can generally be represented as a single con- 
nected chain (Greer, 1985). By modifying the skeleton 
such that distinct groups of atoms are connected to 
one another, we force this constraint to be satisfied 
at every cycle in the refinement procedure. Because 
both the skeletonization and skeleton-modification 
steps are implemented as computer programs, these 
relatively strong constraints on the electron density 
can be applied with no undue human bias. 

The radius of convergence of any refinement pro- 
cedure is likely to be a function of the ratio between 
the number of variables used to represent the scatter- 
ing density and the number of structure-factor 
observations. As this ratio increases, it becomes easier 
to fall into incorrect minima in the refinement cost 
function since errors in the electron density can be 
accurately modeled by the excess parameters. The 
skeleton representation requires relatively few param- 
eters (the grid coordinates for each of the pseudo- 
atoms, approximately equal to the number of true 
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atoms in the structure) but models the scattering 
density with reasonable accuracy (as shown in Fig. 2). 
In contrast, traditional density-modification tech- 
niques treat each electron density map pixel within 
the molecular boundary as a continuous variable 
during refinement. With a 1 ~ grid (appropriate for 
3 ,/k data), a single atom contributes significant elec- 
tron density to about 30 surrounding pixels. The 
skeletonization procedure thus reduces the effective 
number of parameters by approximately one order 
of magnitude. This effect alone may help explain the 
larger apparent radius of convergence of the P R I S M  
method. Further improvements in the skeletonization 
procedure, which are now under way, should result 
in an even greater radius of convergence. 

In addition to differences in the real-space con- 
straints, application of the reciprocal-space con- 
straints also differs between the solvent-flattening and 
P R I S M  procedures. In Wang's (1985) implementa- 
tion of solvent flattening, the filtered-map phase prob- 
ability distribution is multiplied at each cycle by the 
starting (experimentally determined) probability dis- 
tribution to arrive at a new estimate. In contrast, our 
procedure ignores all previous estimates and uses 
only the current electron density map to obtain 
phases. Reciprocal-space recombination is achieved 
using modified Fourier coefficients (2wlFol-IF, l), 
yielding a new map that has the full component of 
the missing density yet the minimal amount of system- 
atic noise (i.e. errors directed along the acalc vector). 
If experimental phase information exists, it should 
be possible to implement a reciprocal-space recombi- 
nation that uses this in each refinement cycle. The 
current procedure is appropriate, however, when the 
starting phase estimates are based on an incomplete 
atomic model that contains significant errors. 

Future work using this methodology will incorpo- 
rate additional constraints in the refinement pro- 
cedure. For instance, P R I S M  refinement could be 
applied to only the poorly defined regions in a map 
derived from a relatively complete molecular-replace- 
ment model. At each cycle, new phases would be 
obtained using the combined real atoms from the 
molecular-replacement model and the nonoverlap- 
ping pseudoatoms from the C O N N E C T  output. 
Alternatively, if a heavy-atom derivative has been 
found, its phase information could be used in a stan- 
dard recombination scheme to direct the refinement. 
The addition of constraints on the phases should 
extend the radius of convergence of the method and 
allow the use of even more abbreviated partial models 
to start refinement. 

We wish to thank Dr Lynn Ten Eyck for a conversa- 
tion that inspired us to take this approach. Funding 
was provided by the Howard Hughes Medical 
Institute. CW was supported by a Fannie and John 
Hertz Foundation fellowship in applied physics. 

A P P E N D I X  
Optimal weighting scheme for modified 

Fourier coefficients 

Given phases calculated for a partial structure, our 
goal is to find optimal Fourier coefficients that 
properly weight the contribution of the scattering 
from the missing atoms. A standard difference map 
(using tFo[-]Fc] coefficients and a~ phases) can be 
decomposed into three components (see Fig. 8), cor- 
responding to the true missing signal, to systematic 
noise (directed along a~) and to random noise (Blun- 
dell & Johnson, 1976): 

( F 0 -  F~) exp iac 

= [F~/ (Fo+ F~)]F,, exp Jam (scaled true signal) 

+ [F2,,/(Fo + F¢)] exp ia~ (systematic noise) 

+[F~F,,,/(Fo + Fc)] exp i ( -a , , ,  + 2ac) 

(random noise). 

An optimal map can be obtained by subtracting the 
best estimate for the systematic noise { [ ( F 2 ) / ( F o +  
F~)]} and by scaling the ( F o -  F~) map such that the 
true scattering is given its full weight { [Fc / (Fo+ 
F,)]-I}. To estimate the average systematic noise we 
may use (Sim, 1960) 

(F2~) F 2 o + F 2 - 2 F o F ~ p ( x )  c o s x d x  

(Fo+F~)  (Fo+Fc)  

F2o + F2~- 2 FoF~w 

(Fo+F~) ,  

where w =  I 1 ( X ) / 1 0 ( X ) ;  X = 2FoF~/(AF2). After the 
average noise is subtracted, the true signal is scaled 
and the model scattering is added (to give the com- 
plete structure rather than the difference signal), we 
have 

{ (Fo-  F~) exp i a ~ - [ ( F ~ ) / ( F o  + Fc)] exp ia~ 

[Fd(Fo+ F~)] 
+ F~ exp iac 

( Fo - Fc)( Fo + F~) - F2o - F2c + 2FoF~w + F 2 

Fc exp iac 

= [2wFo - Fc] exp iota. 

m.?..m.. .... 

Fig. 8. Decomposition of standard difference map into three 
components. Model scattering= F c exp ia c. Missing scatter- 
ing = F,, exp ia,,. True scattering = F o exp ia o = Fc exp iot~ + 
F,, exp ia,,. 
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Thus, a map calculated with the weighted 
coefficients Fw=2W Fo-[F~[ will provide the full 
scattering signal with the correct phase, plus addi- 
tional random and systematic noise that has been 
minimized if the true phase is unknown, 

(2wFo - Fc) exp ia~ = F,. exp ia,, + F~ exp iac 
(true signal at full strength) 

+ ( F2,, - ( F ~ ) ) /  Fc exp iot~ 
(minimal systematic noise) 

+Fro exp i ( - a , ,+2ac )  
(random noise). 
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Abstract 

A new method for the decomposition of a set of start 
phases in two subsets is described. The decomposition 
enables the derivation of the subsets that have good 
values of some figures of merit to different ones with 
nearly the same value. By this operation a new set of 
start phases is obtained for the next refinement pro- 
cess. The method presented can be used as a simple 
but useful extension of the advanced program systems 
for the solution of the phase problem by direct 
methods. 

1. Introduction 

Each direct-method routine consists in forming some 
real function G(~p) of the phase set ¢ and in generat- 
ing a limited number of sets ~Pl, • • •, ~Pr of phases for 
which the values G(¢i)  are close to the value expected 
for the correct solution estimated by the statistical 
theory. 

The function G(¢ )  can be, for example, some 
combination of good figures of merit. We denote by 
V the range of the function G. V is a subset of an 
n-dimensional hypercube, 

V = l l x . . . x l , ,  

0108-7673/93/010104-03506.00 

where n is the number of unknown phases, /j is an 
interval (-zr,  zr) in the case of general phases or two 
values (that differ by zr) for special phases. 

Let the function G be chosen such that, for the 
correct phase set ~o*, the value G(~o*) can be expected 
to be very small, i.e. the routine has to generate 'the 
best' minima of G. 

The most important component  of a direct-method 
routine is a transformation P:  V ~  V. For some start- 
ing set ~0 e V this transformation derives a set of 
phases P ( ¢ )  c V for which a small value of G[P(~o)] 
can be expected. As an example of P we can consider 
the traditional tangent procedure. Let D c  V be a 
subset of all the sets of starting phases used as the 
arguments of function P. D may be, for example, a 
result of the magic-integer procedure (White & 
Woolfson, 1975) or it may be identical to V [see, for 
example, the ' random approach'  of Yao (1981)]. If 
P is based on developing phase values directed by a 
'convergence map'  (Germain, Main & Woolfson, 
1970) from a small subset of fixed (origin definition) 
and trial phases then D is constructed by setting 
arbitrary acceptable values to the remaining phases. 
The direct-methods routine is completely described 
by the triad {D, P, G}; the pair {D, P} determines 
which phase sets may be produced by means of this 
routine. 
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